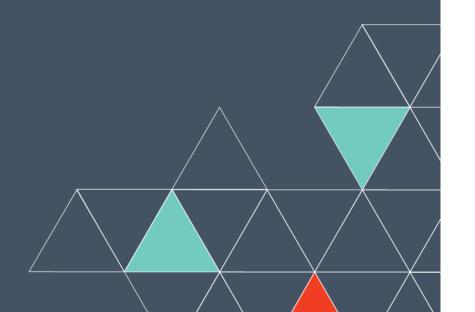
Clinical Application of Homologous Recombination Deficiency (HRD) Biomarkers

Ethan Sokol
Senior Scientist, Cancer Genomics Research, Foundation Medicine

December 4, 2020

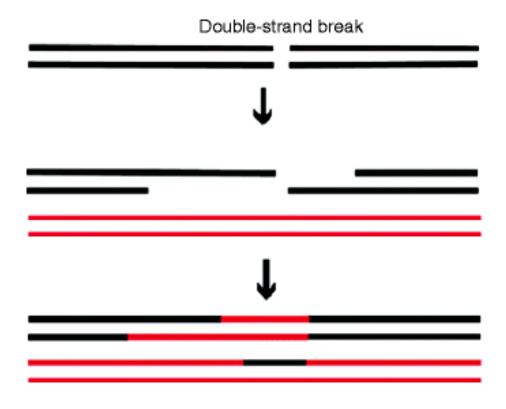


Conflicts of Interest

- Employee at Foundation Medicine
- Roche Shareholder

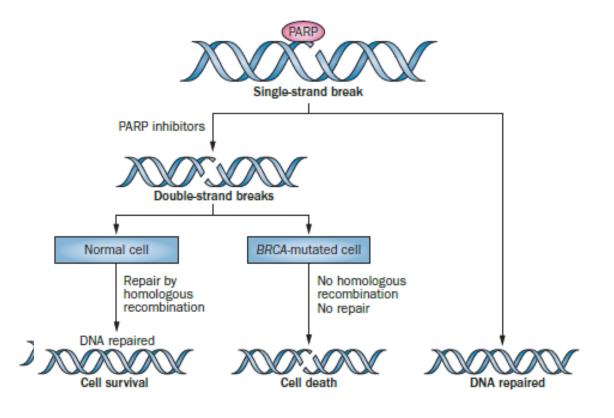
Key Topics

- 1. Homologous Recombination Repair (HRR)
- 2. Clinical Validation of HRRm
- 3. HRD v HRRm
- 4. Clinical applications of HRD biomarkers

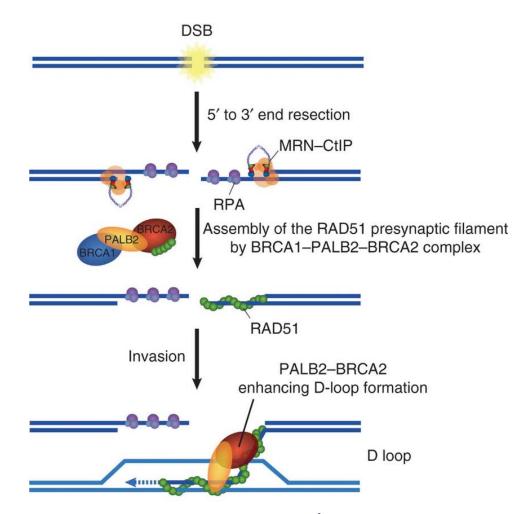

Homologous Recombination Repair (HRR)

Homologous Recombination Repair (HRR)

Repair of Double Strand Breaks

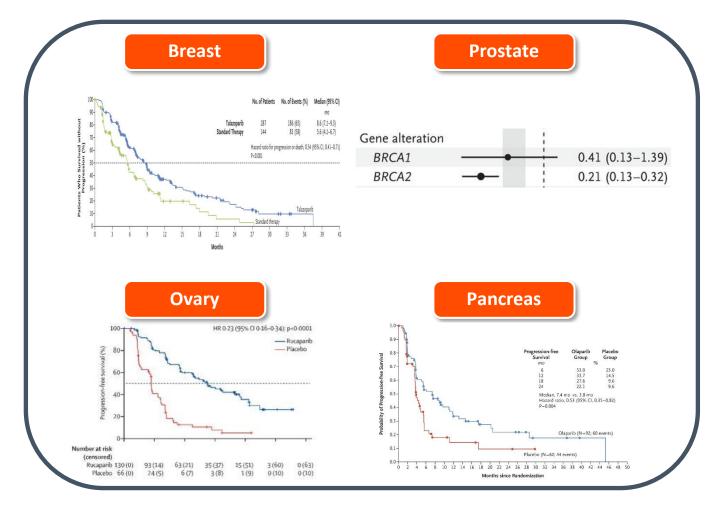

- Homologous Recombination Repair (HRR)
 is a cellular pathway to repair double strand breaks using the sister chromatid as a guide
- HRR ensures chromosomal integrity and cell viability when double strand breaks occur since alternative mechanisms like non-homologous end joining are errorprone

HRR Deficient Tumors are sensitive to Pt/PARPi


- HRR deficient tumors are sensitive to agents that induce double strand breaks: 'Synthetic lethality'
- Platinum chemotherapies and Poly (ADP-ribose)
 polymerase (PARP) inhibitors induce double strand
 breaks and may benefit patients with deficiencies in
 HRR pathway

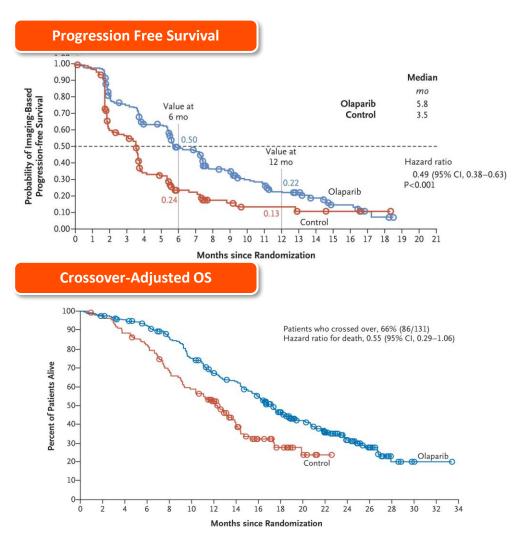
The HRR Pathway

- HRR requires the coordination of several proteins and protein complexes for efficient repair
- Mutations in HRR genes may lead to pathway inactivation, with strong evidence for *BRCA1* and *BRCA2* pre-clinically and clinically
- Growing body of evidence that mutation of additional pathway genes like RAD51 and PALB2 can impair HRR



Clinical Validation of HRRm

BRCA1/2 Mutation is a Biomarker of PARPi response


- BRCA1 and BRCA2 mutations predict sensitivity to PARPi in many tumor types, including breast, ovary, prostate, and pancreatic cancers
- Evidence that germline and somatic mutations are associated with efficacy in ovary, breast, prostate
- Approvals for many PARPi, including olaparib, niraparib, and rucaparib

Prostate PARPi efficacy for a basket of HRR genes

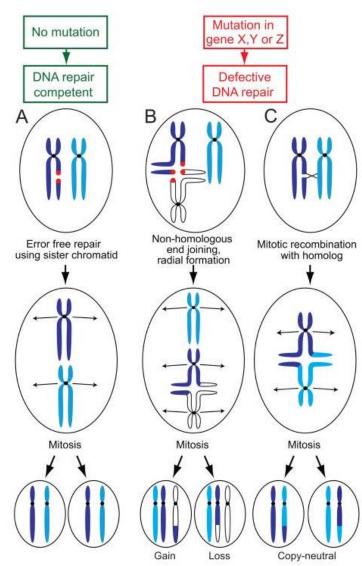
- Enrollment for a broad basket of HRR genes: BRCA1, BRCA2, ATM, BRIP1, BARD1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R1, RAD51B, RAD51C, RAD51D, RAD54L BRIP1, BARD1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R1, RAD51B, RAD51C, RAD51D, RAD54L
- 2.3 month improvement in PFS
- F1CDx Companion Diagnostic claim
 in prostate cancer for olaparib with eligibility based
 on the basket of
 HRR genes

HRD v HRRm

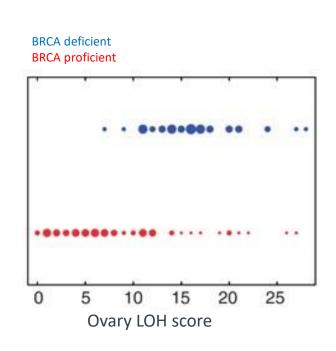
HRRm v HRD

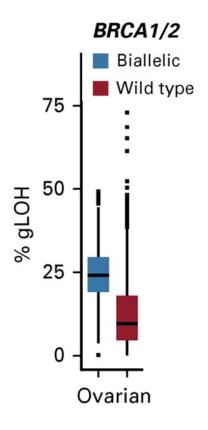
- HRRm (HRR mutation) and HRD (Homologous Recombination Deficiency) are distinct but related terms
- Additional mechanisms for HRD exist beyond HRRm, including gene methylation
- Measuring/assessing HRD may help identify "BRCAness" patients who lack an HRR alteration but may respond to Pt/PARPi

HRRm: Mutation in one or more HRR pathway genes that may lead to functional deficiency in homologous recombination


HRD: Homologous recombination deficiency is a phenotype where tumor cells are not efficiently able to undergo HRR

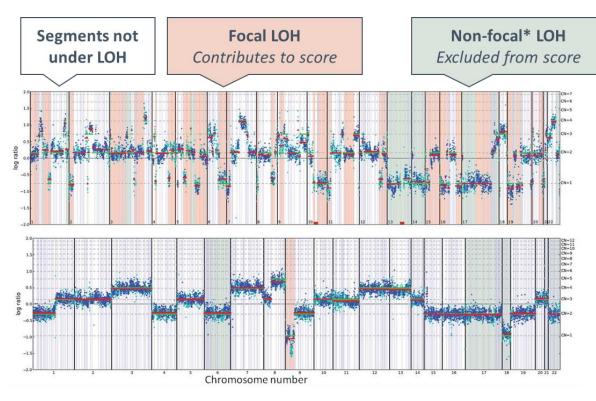
HRD may result in genomic scarring


- Alternative repair pathways (NHEJ and mitotic recombination) leave genomic scars on the genome
- Most common scars are LOH segments (LOH1 or LOHx)
- Focal segments (not whole arm)



Genomic scarring (gLOH) correlates with BRCA status

- Several publications associating focal LOH fragments with BRCA1/2 inactivation
- Suggested that a scarring approach could identify HRD tumors



FMI development of a gLOH HRD algorithm

- HR defects can result in accumulation of focal LOH segments
- FMI measures HRD with a genome-LOH (gLOH) biomarker

LOH-High (≥ 16%)

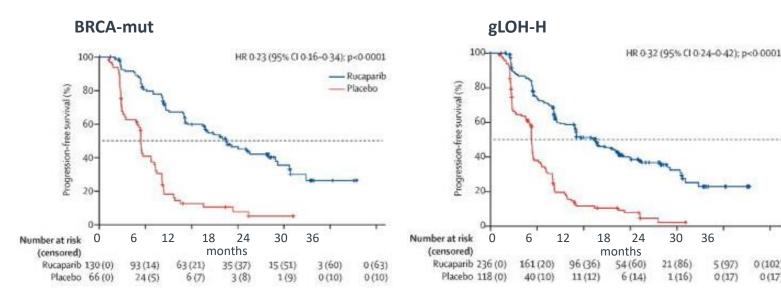
Most segments under LOH are **focal** and **contribute** to the LOH score. Genomic LOH profile **exceeds** 16%.

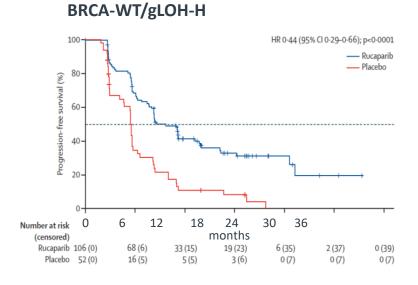
LOH-Low (< 16%)

Most segments under LOH are **chromosome-level events** and are **excluded** from the LOH score. Genomic LOH profile is **below** 16%.

^{1.} Swisher et al., 2016; 27908594, Coleman et al., 2016; ASCO Abstract 5540, Elvin et al., 2017; ASCO Abstract 5512

Clinical applications of HRD biomarkers

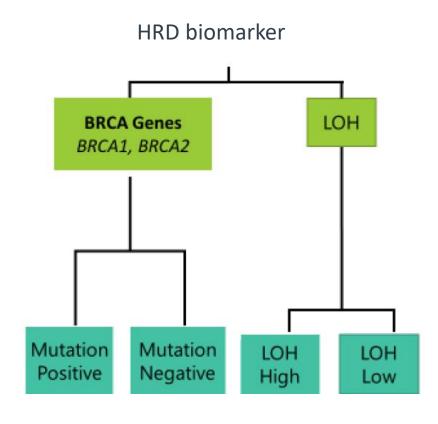

Validation of the gLOH HRD algorithm in ARIEL3


- ARIEL3: Ph3 trial in high grade, Pt-sensitive ovarian cancer; rucaparib v placebo
- Pre-specified gLOH cutoff of 16%; examined in overall and BRCA-WT populations

36

0(17)

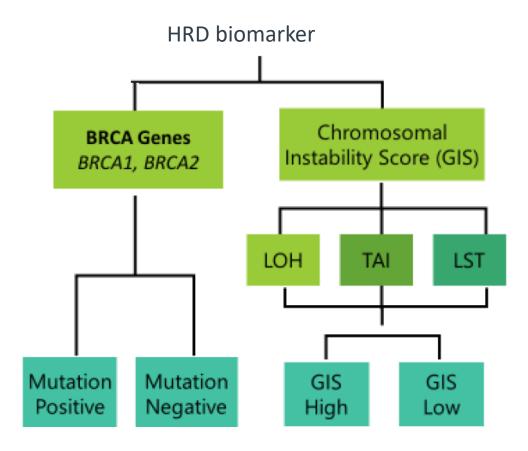
0(102)



HRD Complementary Diagnostic in Ovarian Cancer

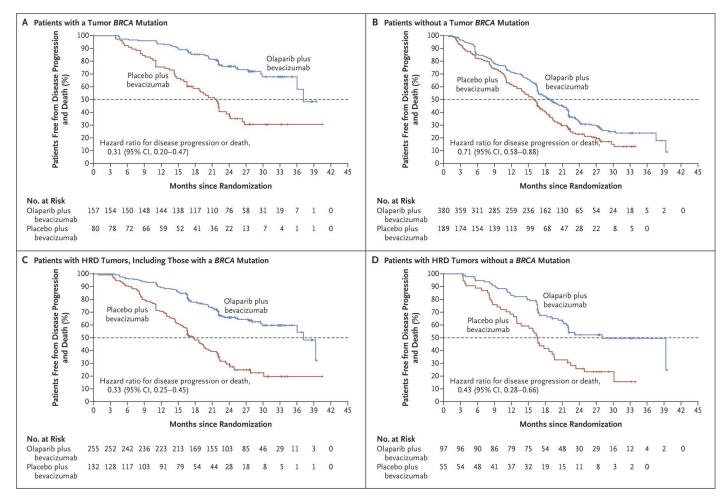
- Based on the results of the ARIEL3 trial, HRD was added as a complementary diagnostic for rucaparib in ovarian cancer
- HRD is a composite biomarker, taking into account BRCA1/2 status and gLOH score
- Included on the Foundation Medicine CDx report

BRCA status	LOH Status	HRD Status	
BRCA+ (either	LOH high	HRD +	
sBRCA or gBRCA)	LOH low		
BRCA -	LOH high		
BRCA -	LOH low	HRD -	

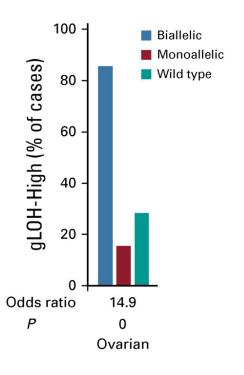


Myriad HRD Biomarker in Ovarian Cancer

- Myriad MyChoice HRD is also a composite biomarker, including genomic scarring methods (gLOH, TAI, LST) and BRCA1/2 status
- Companion diagnostic
 biomarker in ovarian cancer
 for niraparib and maintenance olaparib


BRCA status	GIS Status	HRD Status
BRCA+ (either	GIS high	HRD +
sBRCA or gBRCA)	GIS low	
BRCA -	GIS high	
BRCA -	GIS low	HRD -

Myriad HRD Biomarker in Ovarian Cancer

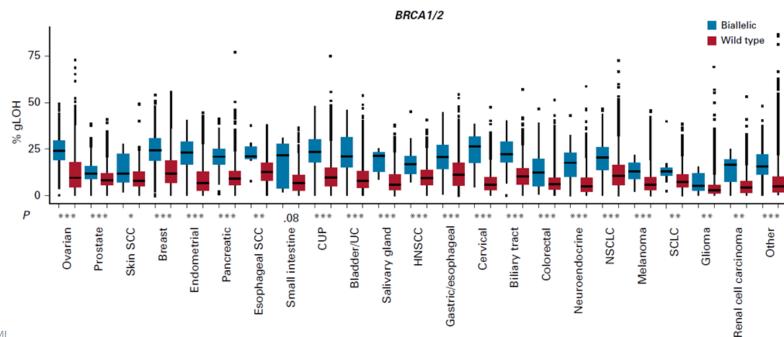

 Myriad MyChoice HRD identifies BRCAwt patients who benefit from olaparib in PAOLA-1

Myriad and Foundation Medicine Approaches

- Myriad's and Foundation Medicine's approaches examine genomic scarring
- Both tests are clinically validated with meaningful benefit :
 - HR 0.32 and 0.33 in ARIEL3 FMI and PAOLA-1 Myriad, respectively for biomarker + v -
 - HR 0.44 and 0.43 in ARIEL3 FMI and PAOLA-1 Myriad, respectively for biomarker + BRCA-WT
- Both tests identify a majority of *BRCA1/2* deficient tumors; FMI ~86% of biallelic *BRCA1/2*, Myriad tuned to ~95% sensitivity

Foundation Medicine Sokol, 2020 JCO PO

Myriad Genetics Hodgson, 2018 BJC


Current Status of HRD Biomarkers

- HRRm detection is available from a number of comprehensive genomic profiling tests, including those from Myriad, Caris, Foundation Medicine, Tempus, in-house panel tests
- HRD tests are only available in ovarian cancers through Myriad and Foundation Medicine, incorporating HRRm and genomic scarring

Future Status of HRRm/HRD Biomarkers

- Trials are planned investigating PARPi for additional HRR genes. We expect the landscape of HRRm approvals to expand in the coming years (>30 DDR genes covered)
- No clinical validation of HRD biomarkers outside of ovarian cancer, but research studies have examined associations of gLOH with HRRm beyond ovary

Future Status of HRRm/HRD Biomarkers

- Expansion of HRD will require clinical validation
- May require optimization of the assay for different tissues

Umut Disel MD

Acibadem Health Group, Adana Hospital

Medical Oncology

Adana/Turkey

A case report; Ovarian cancer (ORD-0876496-01)

- 67 year old female patient. She appladmitted for abdominal swelling. With the diagnosis of ovarian cancer, the TAH + BSO operation was performed in September 2018.
- While the CA-125 test was 1200 at the time of diagnosis (pre-op), the postoperative level fell to 250. Final CA125 test level 12 after adjuvant chemotherapy was within normal range-(March 2019)
- Pathological examination was reported as high grade ovarian serous cancer. Because of stage III disease, adjuvant 6 cycles of paclitaxel and carboplatin chemotherapy was administered.

After 12 months adjuvant chemotherapy, relapse with increasing CA125 levels and some symptoms. Because of neuropathy in the second line setting, Gemcitabine plus Carboplatin plus Bevacizumab x 6 course was given then Bevacizumab maintenance. At 9th months of maintenance CA125 progressed - and F1CDX sent.

- Gem plus Carbo initiated again. (3th. line)
- Weak family history for same cancer.
- BRCA1/2 test for plasma (germline) negative (Inhouse test)
- She is never smoker.
- F1CDX and PDL1 staining was sent with first tissue from operation (time of the diagnosis) (September 2018)

continued

Biomarker Findings

Loss of Heterozygosity score - 22.8% Microsatellite status - MS-Stable Tumor Mutational Burden - 8 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

CDK12 Q244fs*93 MET amplification - equivocal[†] TP53 D259Y

2 Disease relevant genes with no reportable alterations: BRCA1, BRCA2

† See About the Test in appendix for details.

continued

- After F1CDX report, Olaparib (lynparza) was started in the patient because of high LOH.
- She continues her treatment in the second month at a dose of 450mg/day without any problem.
- It continues to be treated with disease free and CA125 within normal limits.

Questions from presenter-Need to discuss


It is not surprising to see LOH score >16 (22) in this serous ovarian cancer case. Any Tumor supressor gene -HRD related genes alterations? Any explanations about that? Which gene/genes responsible for high LOH score?

MET amplification in this case (equivocal) functional? (Is this responsible for resistance to platinum agents?) or just a coincidence?

CDK12 alteration- loss- what is the meaning of this alteration? PARP or platinum drugs sensitivity? Any immunotherapeutic efficacy prediction?

Finally Q about TMB 8 mut/Mb is higher than the median level of ovarian serous cancers. Any answer about this?- HRD genes and high TMB?

Case 2

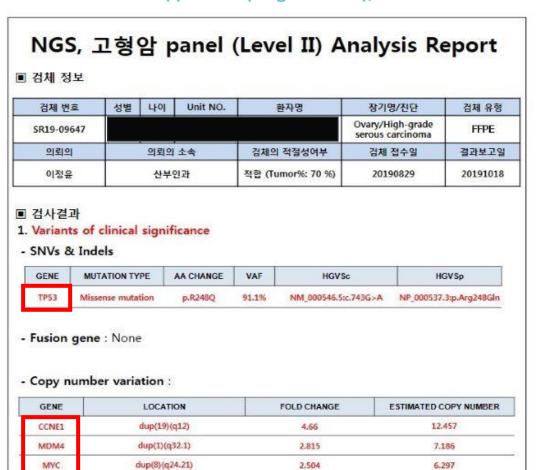
ORD-0903204-01,
Ovary serous carcinoma

Dr. Jung-Yun Lee,

Gyn Oncologist

Severance Hospital, Yonsei University

South Korea



Case History

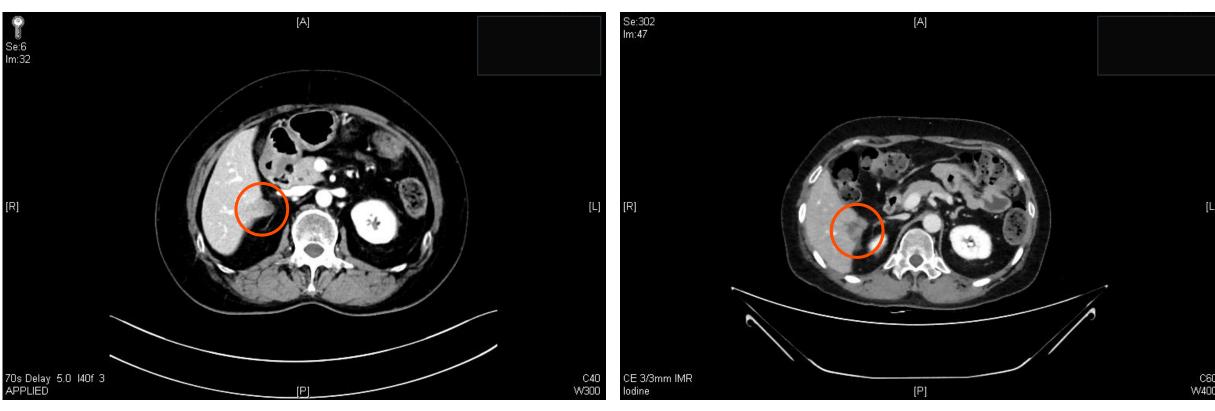
- 58 year old female who was diagnosed with ovarian cancer, stage IIIC in May 2016.
- She underwent PDS+POAC #9 (June 2016~December 2016), Taxotere+Carboplatin CTx #9 (July 2017~March 2018), Caelyx+Avastin CTx #6 (August 2018~January 2019), Topotecan CTx #6 (January 2019~July 2019), then referred to our institution.
- Initial imaging taken in our hospital showed multiple variable sized hepatic metastasis.
- The patient started on Gemzar+Carboplatin CTx #6 (August 2019~December 2019). Follow-up imaging taken on January 2020 revealed overall diminished tumor burden, but increased size of hepatic mass. US guided liver mass biopsy was done, and the final pathology reported a few atypical cells, consistent with metastatic serous carcinoma from the ovary.
- The patient was enrolled in KGOG 3045 (AMBITION study) and treated with Durvalumab+Tremelimumab+Paclitaxel (January 2020~August 2020). Abd+Pel CT taken on August 2020 showed increased extent of hepatic metastatic nodules, therefore, she was eliminated from the trial and began Taxotere+Cisplatin CTx from September 2020.
- After 3 cycles of Taxotere+Cisplatin CTx, she had PR.

Additional Clinical Data (I) – NGS (August 2019), Uterus & BSO slides

2. Variants of unknown significance

- SNVs & Indels

GENE	MUTATION TYPE	AA CHANGE	VAF	HGVSc	HGVSp
CDK12	Missense mutation	p.R1008Q	92.5%	NM_016507.2:c.3023G>A	NP_057591.2:p.Arg1008Gi
CDKN2A	Missense mutation	p.D105E	61.5%	NM_001195132.1:c.315C>A	NP_001182061.1:p.Asp10 5Glu
FGFR3	Missense mutation	p.A502T	56.9%	NM_001163213.1:c.1504G>A	NP_001156685.1:p.Ala502 Thr
ATM	Missense mutation	p.S854Y	53.3%	NM_000051.3:c.2561C>A	NP_000042.3:p.Ser854Tyr
KMT2A	Missense mutation	p.P54A	9.9%	NM_001197104.1x.160C>G	NP_001184033.1:p.Pro54 Ala


- Copy number variation :

GENE	LOCATION	FOLD CHANGE	ESTIMATED COPY NUMBER
CDK4	dup(12)(q14.1)	1.793	4.266
ERCC1	dup(19)(q13,32)	1.721	4.060
CHEK2	dup(22)(q12.1)	1.7	4.000
AKT2 dup(19)(q13.2)		1.659	3.883
ESR1 dup(6)(q25.1-25.2)		1.5	3.429
PIK3CB dup(3)(q22.3)		1.491	3.403
FGF23 del(12)(p13.32)		0.583	0.809
FGFR4	del(5)(q35.2)	0.564	0.754
PDGFRB	del(5)(q32)	0.53	0.657
FGF4 del(11)(q13.3)		0.509	0.597
FGF6 del(12)(p13.32)		0.465	0.471
NRG1	del(8)(p12)	0.447	0.420

Additional Clinical Data (II) – Initial Abd CT (August 2019) & Follow-up Abd CT (January 2020)

FOUNDATION MEDICINE, INC.

The patient started on Gemzar+Carboplatin CTx #6 (August 2019~December 2019). Follow-up imaging taken on January 2020 revealed overall diminished tumor burden, but increased size of hepatic mass. US guided liver mass biopsy was done, and the final pathology reported a few atypical cells, consistent with metastatic serous carcinoma from the ovary.

Additional Clinical Data (III) – US guided Liver mass Bx (January 2020)

[Name Of Operation]

Liver, biopsy

[Pathological Diagnosis]

[Final report]

A few atypical cells expressing PAX8 and WT-1, consistent with metastatic serous carcinoma from the ovary, see note.

Note) The immunohistochemical stain results:

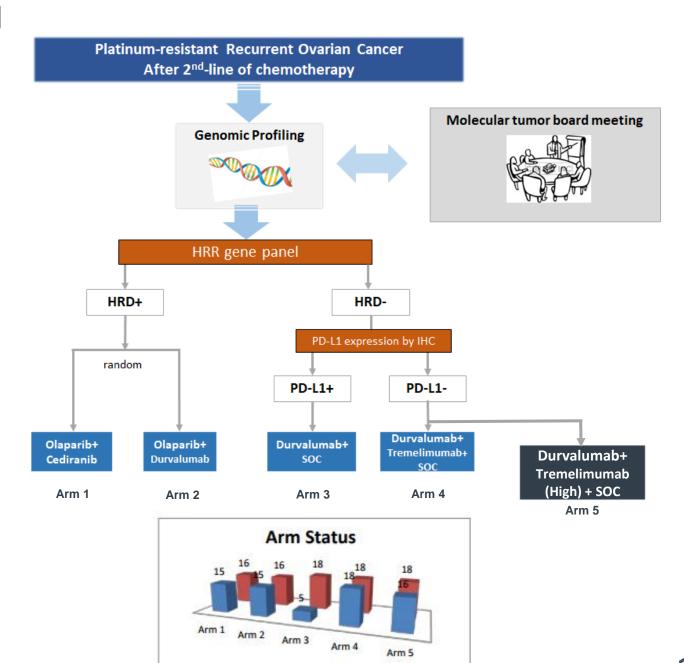
PAX8 and WT-1: positive in tumor cells

The patient was enrolled in KGOG 3045 (AMBITION study) and treated with Durvalumab+Tremelimumab+Paclitaxel (January 2020~August 2020).

KGOG 3045 / AMBITION

Biomarker 1

Biomarker 2


Targeted agents

Primary endpoint: ORR
O+C or O+D is assumed with 30%
D+SOC or D+T+SOC is assumed with 25%
SOC, standard of care

Open: recruiting

Status: FPI in Dec 2018

Target: 86 pts

Actual Target

ITAIIIDCI	GCIIC SYIIIDOI
1	BRCA1
2	BRCA2
3	ATM
4	BRIP1
5	PALB2
6	RAD51C
7	BARD1
8	CDK12
9	CHEK1
10	CHEK2
11	FANCL
12	PPP2R2A
13	RAD51B
14	RAD51D
15	RAD54L

Number Gene Symbol

Additional Clinical Data (IV) – Follow-up Abd-Pel CT & US guided Liver mass Bx (September 2020) **FMI**

Abd+Pel CT taken on August 2020 showed increased extent of hepatic metastatic nodules, therefore, she was eliminated from the trial

[Name Of Operation]

Liver, US-guided gun biopsy

[Pathological Diagnosis]

[Final report]

Presence of carcinoma, favoring metastatic serous carcinoma from the ovary, see note.

Note) 1. The immunohistochemical stain results:

PAX8: diffuse positive in tumor cells

2. 본 환자의 이전 liver 슬라이드 (SS20-06632) 를 리뷰하였습니다.

[Additional report]

+ Immunostaining result:

MLH1: No loss

MSH2: No loss

MSH6: No loss

PMS2: No loss

PD-L1 (SP263): Positive (10%)

HER2: Negative (1+)

Biomarker Findings

Loss of Heterozygosity score - 21.7% Microsatellite status - MS-Stable Tumor Mutational Burden - 4 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

AKT1 amplification - equivocal[†] FGFR3 A500T

TP53 R248Q

C11orf30 (EMSY) amplification

CCNE1 amplification

EPHB1 amplification - equivocal[†]

MCL1 amplification

MDM4 amplification - equivocal[†]

MSH2 G751R - subclonal¹

PRKCI amplification

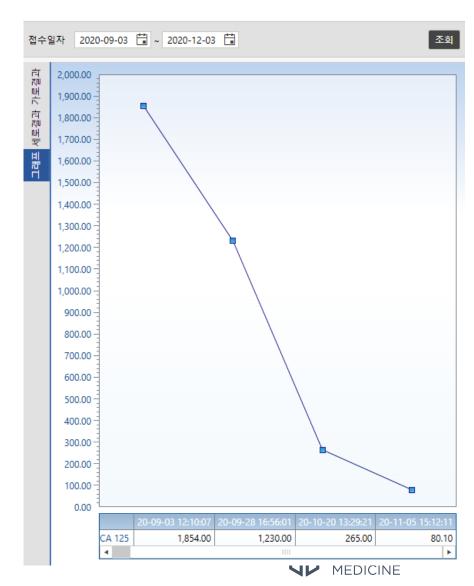
TERC amplification

2 Disease relevant genes with no reportable alterations: BRCA1, BRCA2

† See About the Test in appendix for details.

4 Therapies with Clinical Benefit

28 Clinical Trials


O Therapies with Lack of Response

Additional Clinical Data (V) – Follow-up Abd-Pel CT (November 2020)

After 3 cycles of Taxotere+Cisplatin CTx, she had PR. What is next?

Thank You

